skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bentley, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Steerable needles are capable of accurately targeting difficult-to-reach clinical sites in the body. By bending around sensitive anatomical structures, steerable needles have the potential to reduce the invasiveness of many medical procedures. However, inserting these needles with curved trajectories increases the risk of tissue damage due to perpendicular forces exerted on the surrounding tissue by the needle’s shaft, potentially resulting in lateral shearing through tissue. Such forces can cause significant tissue damage, negatively affecting patient outcomes. In this work, we derive a tissue and needle force model based on a Cosserat string formulation, which describes the normal forces and frictional forces along the shaft as a function of the planned needle path, friction model and parameters, and tip piercing force. We propose this new force model and associated cost function as a safer and more clinically relevant metric than those currently used in motion planning for steerable needles. We fit and validate our model through physical needle robot experiments in a gel phantom. We use this force model to define a bottleneck cost function for motion planning and evaluate it against the commonly used path-length cost function in hundreds of randomly generated three-dimensional (3D) environments. Plans generated with our force-based cost show a 62% reduction in the peak modeled tissue force with only a 0.07% increase in length on average compared to using the path-length cost in planning. Additionally, we demonstrate planning with our force-based cost function in a lung tumor biopsy scenario from a segmented computed tomography (CT) scan. By directly minimizing the modeled needle-to-tissue force, our method may reduce patient risk and improve medical outcomes from steerable needle interventions. 
    more » « less
  2. null; null (Ed.)
    New abstractions and frameworks are born when one creates hard-coded solutions to important tasks, regardless of whether they scale or result in software that can be meaningfully released. This paper describes our experience creating such a light-weight framework out of a previous tool effort FLiT for detecting compiler-induced numerical variability. The resulting framework FLOAT has already helped us better understand and fix performance bugs in FLiT. Our design of FLOAT and the ways in which we anticipate it enabling the adoption and re-purposing of FLiT, though likely not exhaustive, are described. We also express our views on the appropriate scope of such an approach, especially given that variations of compilation, linking, and execution abound, and specializing in that domain may be advantageous in the long-term as opposed to investing in an overly generalized paradigm. 
    more » « less
  3. Successful HPC software applications are long-lived. When ported across machines and their compilers, these applications often produce different numerical results, many of which are unacceptable. Such variability is also a concern while optimizing the code more aggressively to gain performance. Efficient tools that help locate the program units (files and functions) within which most of the variability occurs are badly needed, both to plan for code ports and to root-cause errors due to variability when they happen in the field. In this work, we offer an enhanced version of the open-source testing framework FLiT to serve these roles. Key new features of FLiT include a suite of bisection algorithms that help locate the root causes of variability. Another added feature allows an analysis of the tradeoffs between performance and the degree of variability. Our new contributions also include a collection of case studies. Results on the MFEM finite-element library include variability/performance tradeoffs, and the identification of a (hitherto unknown) abnormal level of result-variability even under mild compiler optimizations. Results from studying the Laghos proxy application include identifying a significantly divergent floating-point result-variability and successful root-causing down to the problematic function over as little as 14 program executions. Finally, in an evaluation of 4,376 controlled injections of floating-point perturbations on the LULESH proxy application, we showed that the FLiT framework has 100% precision and recall in discovering the file and function locations of the injections all within an average of only 15 program executions. 
    more » « less
  4. An approach to reproducibility problems related to porting software across machines and compilers. 
    more » « less